Long non-coding RNA SNHG10 upregulates BIN1 to suppress the tumorigenesis and epithelial–mesenchymal transition of epithelial ovarian cancer via sponging miR-200a-3p

CELL DEATH DISCOVERY(2022)

引用 10|浏览14
暂无评分
摘要
Epithelial ovarian cancer (EOC) is one of the most frequent and fatal gynecologic malignant tumors resulting in an unsatisfying prognosis. Long non-coding RNAs (lncRNAs) play pivotal roles in the tumorigenesis and progression of EOC. However, the profile of lncRNAs involved in EOC remains to be expanded to further improve clinical treatment strategy. In present study, we identified a novel tumor-suppressive lncRNA small nucleolar RNA host gene 10 (SNHG10) in EOC. Kaplan–Meier analysis and COX proportional hazard progression model showed that low expression of SNHG10 was correlated with a poor prognosis of EOC patients. Overexpressing SNHG10 suppressed the proliferation, colony formation, migration, and invasion of EOC cells. Furthermore, SNHG10 was predicted to sponge miR-200a-3p in EOC cells according to the LncBase v.2 experimental module. Then, the binding of SNHG10 and miR-200a-3p was confirmed by performing quantitative real-time PCR (qRT-PCR) and luciferase reporter assays. RNA immunoprecipitation (RIP) showed that SNHG10 and miR-200a-3p occupied the same Ago2 protein to form an RNA-induced silencing complex (RISC). By overlapping the results from the bioinformatics algorithms, tumor-suppressor bridging integrator-1 (BIN1) was found to be a main downstream target of the SNHG10/miR-200a-3p axis. Low expression of BIN1 in EOC tissues was detected by using immunohistochemistry (IHC). Besides, BIN1 and SNHG10 expression was positively correlated in EOC tissues. By performing miRNA rescue experiments, a SNHG10/miR-200a-3p/BIN1 axis and its promoting effects on malignant behaviors and epithelial–mesenchymal transition (EMT) process were verified in EOC cells. Moreover, SNHG10 overexpression significantly suppressed the tumorigenesis and EMT of EOC cells in vivo. Altogether, SNHG10 sponges miR-200a-3p to upregulate BIN1 and thereby exerting its tumor-suppressive effects in EOC. Therefore, the SNHG10/miR-200a-3p/BIN1 axis may act as a potential predictive biomarker and therapeutic target for treating EOC.
更多
查看译文
关键词
Long non-coding RNAs,Ovarian cancer,Tumour-suppressor proteins,Life Sciences,general,Biochemistry,Cell Biology,Stem Cells,Apoptosis,Cell Cycle Analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要