谷歌浏览器插件
订阅小程序
在清言上使用

Design and Calibration of Torque Measurement System of Comprehensive Performance Test Instrument of Industrial Robot Reducer.

Computational intelligence and neuroscience(2022)

引用 2|浏览13
暂无评分
摘要
The measurement of input and output torque of a precision reducer, the core component of an industrial robot, plays a vital role in evaluating the robot's performance. The TMSIS and TMSOS of a vertical cylindrical high-precision reducer detector were designed and investigated in this study to realize the accurate measurement of input and output torque of the reducer. Because a transmission chain connects the torque transducer and the reducer, the characteristics of the inevitable additional torque are analyzed in detail. A torque calibration device is developed to realize the calibration of the torque measurement system. The readings of the torque calibration device are compared with the data of the instrument’s torque measurement system to realize the instrument's torque calibration. The improved particle swarm optimization and Levenberg–Marquardt algorithm-based radial basis function neural network is used to compensate for the error of the torque measurement system. The parameters of the RBF neural network are settled according to the characteristics of the additional torque and the torque calibration results. The experimental results show that the torque measurement accuracy of the torque measurement system can reach 0.1% FS after torque calibration and error compensation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要