Microfluidic Oxidation of Graphite in Two Minutes with Capability of Real-Time Monitoring

ADVANCED MATERIALS(2022)

引用 9|浏览17
暂无评分
摘要
Graphite oxide and its exfoliated counterpart, graphene oxide, are important precursors for the large-scale production of graphene-based materials and many relevant applications. The current batch-style preparation of graphite oxide suffers from safety concern, long reaction time, and nonuniform product quality, due to the large volume of reactors and slow energy exchange. Reaction in microchannels can largely enhance the oxidization efficiency of graphite due to the enhanced mass transfer and extremely quick energy exchange, by which the controllable oxidization of graphite is achieved in approximate to 2 min. Comprehensive characterizations show that the graphene oxide obtained through the microfluidic strategy has features like those prepared in laboratory beakers and industrial reactors, yet with the higher oxidization degree and more epoxy groups. More importantly, the microfluidic preparation allows for on-line monitoring of the oxidization by Raman spectroscopy, ready for the dynamical control of reaction condition and product quality. The capability of continuous preparation is also demonstrated by showing the assembly of fibers and reduction of graphene oxide in microfluidic channels, and the applicability of graphene oxide prepared from the microfluidic strategy for thermally and electrically conductive films.
更多
查看译文
关键词
continuous preparation, graphite oxide, microchannels, microreactors, on-line monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要