Semantically Proportional Patchmix for Few-Shot Learning.

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)(2022)

引用 1|浏览54
暂无评分
摘要
Few-shot learning aims to classify unseen classes with only a limited number of labeled data. Recent works have demonstrated that training models with a simple transfer learning strategy can achieve competitive results in few-shot classification. Although excelling at distinguishing training data, these models are not well generalized to unseen data, probably due to insufficient feature representations on evaluation. To tackle this issue, we propose Semantically Proportional Patchmix (SePPMix), in which patches are cut and pasted among training images and the ground truth labels are mixed proportionally to the semantic information of the patches. In this way, we can improve the generalization ability of the model by regional dropout effect without introducing severe label noise. To learn more robust representations of data, we further take rotate transformation on the mixed images and predict rotations as a rule-based regularizer. Extensive experiments on prevalent few-shot benchmarks have shown the effectiveness of our proposed method.
更多
查看译文
关键词
few-shot learning,image classification,data augmentation,generalization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要