谷歌浏览器插件
订阅小程序
在清言上使用

Tuning the Equatorial Negative Charge in Hexagonal Bipyramidal Dysprosium(III) Single-Ion Magnets to Improve the Magnetic Behavior

Inorganic chemistry(2022)

引用 16|浏览12
暂无评分
摘要
Taking advantage of the pentaethylene glycol (EO5) and deprotonation of EO5, a family of new structurally hexagonal bipyramidal Dy(III) complexes, [Dy(EO5)(2,6-dichloro-4-nitro-PhO)2](2,6-dichloro-4-nitro-PhO) (1), [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)2] (2), and [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)Cl] (3), were controbllably synthesized and structurally characterized. Magnetic measurements show that complex 1 is a zero-field SIM and has an observable hysteresis opening up to 4 K. Conversely, only under extra magnetic field is slow magnetic relaxation observed in 2 and 3. This considerable difference in the magnetic behavior is mainly caused by the change of the equatorial negative charge. Detailed ab initio calculations further elucidate that the quantum tunneling is induced by the presence of equatorial negative charge, and the magnetic anisotropy depends on the axial ligands. This work demonstrates that the absence of the equatorial negative charge should also be considered in the rational design of promising single molecular magnets based on the oblate ions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要