Differential regulation of BACE1 promoter activity by nuclear factor-κB in neurons and glia upon exposure to β-amyloid peptides

Journal of Neuroscience Research(2007)

引用 0|浏览0
暂无评分
摘要
The brains of Alzheimer's disease (AD) patients display cerebrovascular and parenchymal deposits of beta-amyloid (A beta) peptides, which are derived by proteolytic processing by the beta-site APP-cleaving enzyme 1 (BACE1) of the amyloid precursor protein (APP). The rat BACE1 promoter has a nuclear factor-kappaB (NF-kappaB) binding site. Deletion studies with a BACE1 promoter/luciferase reporter suggest that the NF-kappaB binding DNA consensus sequence plays a suppressor role, when occupied by NF-kappaB, in the regulation of neuronal brain BACE1 expression. Here we characterize a signal transduction pathway that may be responsible for the increases in A beta associated with AD. We propose that the transcription factor NF-kappaB acts as a repressor in neurons but as an activator of BACE1 transcription in activated astrocytes present in the CNS under chronic stress, a feature present in the AD brain. The activated astrocytic stimulation of BACE1 may in part account for increased BACE1 transcription and subsequent processing of Ab eta in a cell-specific manner in the aged and AD brain. As measured by reporter gene promoter constructs and endogenous BACE1 protein expression, a functional NF-kappaB site was stimulatory in activated astrocytes and A beta-exposed neuronal cells and repressive in neuronal and nonactivated astrocytic cells. Given the evidence for increased levels of activated astrocytes in the aged brain, the age- and AD-associated increases in NF-kappaB in brain may be significant contributors to increases in A beta, acting as a positive feedback loop of chronic inflammation, astrocyte activation, increased p65/p50 activation of BACE1 transcription, and further inflammation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要