From BeyondPlanck to Cosmoglobe: Preliminary $\mathit{WMAP}$ $\mathit Q$-band analysis

arxiv(2022)

引用 2|浏览48
暂无评分
摘要
We present the first application of the Cosmoglobe analysis framework by analyzing 9-year $\mathit{WMAP}$ time-ordered observations using similar machinery as BeyondPlanck utilizes for $\mathit{Planck}$ LFI. We analyze only the $\mathit Q$-band (41 GHz) data and report on the low-level analysis process from uncalibrated time-ordered data to calibrated maps. Most of the existing BeyondPlanck pipeline may be reused for $\mathit{WMAP}$ analysis with minimal changes to the existing codebase. The main modification is the implementation of the same preconditioned biconjugate gradient mapmaker used by the $\mathit{WMAP}$ team. Producing a single $\mathit{WMAP}$ $\mathit Q$1-band sample requires 22 CPU-hrs, which is slightly more than the cost of a $\mathit{Planck}$ 44 GHz sample of 17 CPU-hrs; this demonstrates that full end-to-end Bayesian processing of the $\mathit{WMAP}$ data is computationally feasible. In general, our recovered maps are very similar to the maps released by the $\mathit{WMAP}$ team, although with two notable differences. In temperature we find a $\sim2\,\mathrm{\mu K}$ quadrupole difference that most likely is caused by different gain modeling, while in polarization we find a distinct $2.5\,\mathrm{\mu K}$ signal that has been previously called poorly-measured modes by the $\mathit{WMAP}$ team. In the Cosmoglobe processing, this pattern arises from temperature-to-polarization leakage from the coupling between the CMB Solar dipole, transmission imbalance, and sidelobes. No traces of this pattern are found in either the frequency map or TOD residual map, suggesting that the current processing has succeeded in modelling these poorly measured modes within the assumed parametric model by using $\mathit{Planck}$ information to break the sky-synchronous degeneracies inherent in the $\mathit{WMAP}$ scanning strategy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要