谷歌浏览器插件
订阅小程序
在清言上使用

Modeling the Interior Dynamics of Terrestrial Planets

High Performance Computing in Science and Engineering ' 17(2018)

引用 0|浏览2
暂无评分
摘要
Over the past years, large scale numerical simulations of planetary interiors have become an important tool to understand physical processes responsible for the surface features observed by various space missions visiting the terrestrial planets of our Solar System. Such large scale applications need to show good scalability on thousands of computational cores while handling a considerable amount of data that needs to be read from and stored to a file system. To this end, we analyzed numerous approaches to write files on the Cray XC40 Hazel Hen supercomputer. Our study shows that HPC applications parallelized using MPI highly benefit from utilizing the MPI I/O facilities. By implementing MPI I/O in Gaia, we improved the I/O performance up to a factor of 100. Additionally, in this study we present applications of the fluid flow solver Gaia using high resolution regional spherical shell grids to study the interior dynamics and thermal evolution of terrestrial bodies of our Solar System.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要