SIRPα deficiency accelerates the pathologic process in models of Parkinson disease

Jin Wang,Xin Ding, Xiangyu Wu,Jing Liu, Rui Zhou, Pingxuan Wei,Qipeng Zhang,Chenyu Zhang,Ke Zen,Liang Li

Glia(2019)

引用 0|浏览0
暂无评分
摘要
Microglia-mediated neuroinflammation is a crucial pathophysiological contributor to several aging-related neurodegenerative disorders, including Parkinson's disease (PD). During the process of aging or stress, microglia undergoes several transcriptional and morphological changes that contribute to aberrant immunological responses, which is known as priming. Key molecules involved in the process, however, are not clearly defined. In the present study, we have demonstrated that level of microglial signal regulatory protein α (SIRPα) decreased during aging or inflammatory challenge. Functional studies suggested that downregulation of SIRPα released the brake of inflammatory response in microglia, revealing an inhibitory effect of SIRPα in microglial activation. Furthermore, we assessed the impact of SIRPα downregulation in PD pathogenesis using both cell culture and animal models. Our results showed that SIRPα deficiency resulted in abnormal inflammatory response and phagocytic activity of microglia, which in turn, further accelerated degeneration of dopaminergic neurons in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine or lipopolysaccharides mice models. These results collectively demonstrate that dysregulation of SIRPα signaling in microglia during aging plays a critical role in the pathogenesis of age-related neurological disorders such as PD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要