Construction of Phenol/O2 Fuel Cell with CuO/MWCNTs Modified Electrode as Anode

Nano(2019)

引用 0|浏览1
暂无评分
摘要
Traditional biofuel cells (BFCs) are devices that use biological catalysts to catalyze the oxidation of organic materials and in the meantime convert chemical energy into electrical energy. In this work, a nonenzymatic catalyst that integrated copper oxide with multi-walled carbon nanotubes (CuO/MWCNTs) was synthesized by a simple solvothermal method, and the composites show an outstanding electrocatalytic activity for oxidation of phenol due to the synergistical contribution of CuO nanoparticles and MWCNTs. The effects of the pH, concentration of electrolyte and phenol and scan rate on the phenol oxidation are investigated. Benefitting from the excellent performance toward phenol oxidation, a H-type phenol fuel cell was fabricated with CuO/MWCNTs as anode material and electro-deposited platinum film as cathode material. The results show that the phenol fuel cell has an open-circuit potential (OCP) of 0.69[Formula: see text]V and can produce a maximum power density of 0.25[Formula: see text]mW[Formula: see text]cm[Formula: see text] at 0.44[Formula: see text]V with 500[Formula: see text]mg[Formula: see text][Formula: see text][Formula: see text]L[Formula: see text] phenol and 0.1[Formula: see text]mol[Formula: see text][Formula: see text][Formula: see text]L[Formula: see text] PBS. The stability test revealed that the fuel cell could still deliver about 0.24[Formula: see text]mW[Formula: see text][Formula: see text][Formula: see text]cm[Formula: see text] after repeating the test for five times, indicating that the fuel cell has good stability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要