Design and Proposal of a Database for Firearms Detection
Advances in Intelligent Systems and ComputingAdvances in Emerging Trends and Technologies(2019)
Abstract
Closed circuit television (CCTV) surveillance systems that implement monitoring operators have multiple human limitations, these systems usually don’t provide an immediate response in different situations of danger like an armed robbery. To address this security gap, a firearms detection system has been developed through convolutional neural networks (CNNs). For its development a large database of images is necessary. This article presents the creation and characteristics of this database, which is made up of 247,576 images obtained from the web. This article addresses the application of different techniques for the creation of new images from the initial ones to increase the database, obtaining up to 22.7% relative improvement in the accuracy of the network after increasing the database. The database is structured into two classes. The first class is made up of people that have a gun and the second class of people not carrying a gun. The use of this database in the development of the detection system obtained up to 90% in “Precision” and “Recall” metrics in a convolutional neural network configuration based on “VGG net”, through the use of grayscale images.
MoreTranslated text
Key words
Convolutional neural network, Database, Detection, Firearm
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined