谷歌浏览器插件
订阅小程序
在清言上使用

A Multi-Pronged Approach to Low-Pressure Cu Sintering Using Surface-Modified Particles, Substrate and Chip Metallization

Proceedings of the International Symposium on Microelectronics(2019)

引用 0|浏览3
暂无评分
摘要
High temperature power electronics based on wide-bandgap semiconductors have prominent applications, such as automotive, aircrafts, space exploration, oil/gas extraction, electricity distribution. Die-attach bonding process is an essential process in the realization of high temperature power devices. Here Cu offers to be a promising alternative to Ag, especially because of thermal and mechanical properties on par with Ag and a cost advantage by being a factor 100 cheaper than Ag. With the aim to achieve a low-pressure Cu sintering process, a low cost wet chemical etching process is developed to selectively etch Zn from brass to create nano-porous surface modifications to enhance sinterability, enabling sintering with low bonding pressure of 1MPa and at temperatures below 300°C. However, high tendency of Cu to oxidize poses a major challenge in realizing stable interconnects. For this purpose, in this contribution, we present the use of polyethylene-glycol 600 as reducing binder in the formulation of the Cu sintering paste. Finally, we propose a multi-pronged approach based on three crucial factors: surface-modified substrates, nanostructured surface modifications on micro-scale Cu-alloy particles and use of a reducing binder in the Cu particle paste.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要