Reduced-Order Modeling and Experimental Studies of Two-Way Coupled Fluid-Structure Interaction in Flapping Wings

Volume 8: 31st Conference on Mechanical Vibration and Noise(2019)

引用 1|浏览0
暂无评分
摘要
Abstract Flapping, flexible wings deform under both aerodynamic and inertial loads. However, the fluid-structure interaction (FSI) governing flapping wing dynamics is not well understood. Conventional FSI models require excessive computational resources and are not conducive to parameter studies that consider variable wing kinematics or geometry. Here, we present a simple two-way coupled FSI model for a wing subjected to single-degree-of-freedom (SDOF) rotation. The model is reduced-order and can be solved several orders of magnitude faster than direct computational methods. We construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and in-vacuum to study our model experimentally. Overall, agreement between theory and experiment is excellent. In-vacuum, the wing has a large 3ω response when flapping at approximately 1/3 its natural frequency. This response is attenuated substantially when flapping in-air as a result of aerodynamic damping. These results highlight the importance of two-way coupling between the fluid and structure, since one-way coupled approaches cannot describe such phenomena. Moving forward, our model enables advanced studies of biological flight and facilitates bio-inspired design of flapping wing technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要