谷歌浏览器插件
订阅小程序
在清言上使用

Introducing Microfluidics Through A Problem Based Laboratory Course

Ian Papautsky, Cathy Maltbie,David Eddington,Ali Asgar Bhagat, Hugo Caicedo

2008 Annual Conference & Exposition Proceedings(2020)

引用 0|浏览26
暂无评分
摘要
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract Introducing Microfluidics through a Problem-Based Laboratory Course Abstract Microfluidics is a multidisciplinary field that deals with the behavior and precise control of microliter and nanoliter volumes of fluids. In the past decade, microfluidics has transformed many areas of engineering and applied sciences. Yet little has been done to transfer the microfluidics research to the undergraduate curricula. To address this need, University of Cincinnati is developing a new undergraduate laboratory course to introduce students to microfluidic device development. A unique aspect of the course is the focus on an extended problem-based learning example that underlines all course activities. Working in teams of three, students use multi-physics modeling software (CFD ACE+ from ESI-CFD Inc.) to design and simulate a microfluidic mixer. Students then use the University of Cincinnati’s state-of-the-art clean room facility to prototype the designed devices in polymer and characterize them using fluorescence microscopy. Employing teams of students working together to conduct laboratory assignments allows team members to learn from each other and takes maximal advantage of students teaching students. At the end of the term, in seminar-style presentations, each student group discusses their device design, and compares experimental results with simulations. Following two successful offerings at the University of Cincinnati, we are now offering the course at the University of Illinois at Chicago, with plans of disseminating the course to other Universities across the country. Introduction Microfluidics is a multidisciplinary field spanning physics, chemistry, engineering and biotechnology, that studies the behavior of fluids at the microscale and the design of systems to leverage such behavior. The behavior of fluids at the microscale differs from “macrofluidic” behavior in that factors such as surface tension, energy dissipation, and electrokinetics begin to dominate. Microfluidics investigates how these behaviors change, and how they can be exploited for new uses. Integrating microfluidics with sensors, actuators, or other electronics gives new functionalities [1,2,3]. More importantly, the new fluid manipulation principles have enabled manipulation and detection of nanoliter fluid samples. To address the growing national need, we developed a laboratory course “Microfluidic Biochip Laboratory.” The course has been recently described in several publications and presentations [4,5,6]. Briefly, a unique aspect of the course is the focus on an extended problem-based learning example of a microfluidic mixer that underlines all course activities. Focusing the course on the microfluidic mixer example permitted us to discuss all aspects of the microfluidic design cycle; including theory, modeling, fabrication, device characterization, and applications which is ideal for this introduction to the field. Working in teams of 3 or 4, students used multi- physics modeling software CFD ACE+ (ESI-CFD Inc., Huntsville, AL) to design and simulate a microfluidic mixer. Students then used the University of Cincinnati’s state-of-the-art clean room
更多
查看译文
关键词
microfluidics,laboratory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要