Scleroglucan Polymer Stability: Thermal, Chemical, and Microbial

Briana Kozlowicz, Tryg Jensen, Malhar Khambete,Mohannad J. Kadhum, Frøydis Kirsti Garshol,Eilen Arctander Vik,Renata Tomczak-Wandzel,Diego A. Wever, Bart P. Lomans,Charles Ray

Day 2 Tue, September 01, 2020(2020)

引用 0|浏览4
暂无评分
摘要
Abstract Polymers for enhanced oil recovery (EOR) purposes are required to have long term mechanical, thermal, chemical, and biological stability across a wide variety of conditions throughout field deployment. In this work we expand upon initial studies of scleroglucan biopolymer stability and demonstrate that scleroglucan solutions retain a significant proportion of their initial viscosity over a large range of stresses. Thermal stability of the biopolymer, scleroglucan, was tested at temperatures of up to 115°C, wherein the samples retained >95 % of the original viscosity over several months, and at 105 °C sclergolucan maintained >95 % viscosity over the course of 720 days. Scleroglucan was found to be chemically compatible with formaldehyde, glutaraldehyde, tetrakis(hydroxymethyl)-phosphonium sulfate (THPS), and 1,3,4,6-tetrakis(hydroxymethyl)tetrahydroimidazo-[4,5-d]imidazole-2,5(1H,3H)-dione (TMAD) for six months at 37 °C, 85 °C, and 95 °C, indicating these biocides have the potential for use in microbial control during scleroglucan implementation under various conditions. Rheological studies indicate the viscosifying power of scleroglucan is largely unimpacted by common reservoir salts (including divalents and trivalents) even through 20 % (wt/wt) salt addition. Microbial risks to polymer stability were also investigated. The susceptibility of scleroglucan to microbial degradation was assessed under reservoir relevant conditions using a bottle test system in which the polymer was incubated with active microbial cultures under various conditions that simulate reservoirs spanning 3.5 % to 17 % salinity and 30 °C to 90 °C. Our tests of microbial degradation found that anaerobic samples incubated with active microbial consortia under lower salinities and temperature lost viscosity with concomitant microbial growth indicating the presence of scleroglucan degrading organisms in the inoculum. However, anaerobic samples at temperatures above 60 °C and salinities greater than 7 % retained viscosity during the experiment illustrating polymer stability under conditions similar to those of harsh reservoirs. This study further refines the window of operation where scleroglucan maintains functional viscosity and may be employed for EOR use.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要