4094 Structural Determinants of Immunogenicity for Peptide-Based Immunotherapy

Journal of Clinical and Translational Science(2020)

引用 0|浏览1
暂无评分
摘要
OBJECTIVES/GOALS: Neoantigen vaccine immunotherapies have shown promise in clinical trials, but identifying which peptides to include in a vaccine remains a challenge. We aim to establish that molecular structural features can help predict which neoantigens to target to achieve tumor regression. METHODS/STUDY POPULATION: Proteins were prepared by recombinant expression in E. coli followed by in vitro refolding. Correctly folded proteins were purified by chromatography. Affinities of protein-protein interactions were measured by surface plasmon resonance (SPR) and thermal stabilities of proteins were determined by differential scanning fluorimetry. All experiments were performed at least in triplicate. Protein crystals were obtained by hanging drop vapor diffusion. The protein crystal structures were solved by molecular replacement and underwent several rounds of automated refinement. Molecular dynamics simulations were performed using the AMBER molecular dynamics package. RESULTS/ANTICIPATED RESULTS: A T cell receptor (TCR) expressed by tumor-infiltrating T cells exhibited a 20-fold stronger binding affinity to the neoantigen peptide compared to the self-peptide. X-ray crystal structures of the peptides with the major histocompatibility complex (MHC) protein demonstrated that a non-mutated residue in the peptide samples different positions with the mutation. The difference in conformations of the non-mutated residue was supported by molecular dynamics simulations. Crystal structures of the TCR engaging both peptide/MHCs suggested that the conformation favored by the mutant peptide was crucial for TCR binding. The TCR bound the neoantigen/MHC with faster binding kinetics. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that the mutation impacts the conformation of another residue in the peptide, and this alteration allows for more favorable T cell receptor binding to the neoantigen. This highlights the potential of non-mutated residues in contributing to neoantigen recognition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要