High-throughput and controllable manufacturing of liquid crystal polymer planar microlens array for compact fingerprint imaging

OPTICS EXPRESS(2022)

引用 3|浏览1
暂无评分
摘要
The microlens array (MLA) with a small geometric footprint and unique performances, is the key enabler to push the development of photonic devices toward miniaturization, multi-function and large-scale integration. However, the realization of 100% fill-factor (FF) MLAs with high controllability and its mass manufacturing without complex steps has always been a difficult issue. Here, we propose an efficient, highly flexible and low-cost manufacturing approach for MLAs with a high FF via snapshot polarization patterning. The digitalized linear polarization pattern was distributed across the photo-alignment layer with both high efficiency and accuracy, enabling large-area liquid crystal MLA with parameter controllability from element to element. The MLA manufacturing process does not involve developing, etching and deposition steps and is suitable for industry up-scaling. We further proposed a novel compact compound-eye imaging system for biometrics with the obtained MLAs. The 100% FF MLA enables high light utilization efficiency and low background crosstalk, yielding compact biometrics indentation with high recognition accuracy. The realization of such planar optics would lead to a plethora of different miniaturized multiaperture imaging systems in the future. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要