Wide color gamut white light-emitting diodes based on two-dimensional semiconductor nanoplatelets

OPTICS EXPRESS(2022)

引用 5|浏览1
暂无评分
摘要
II-VI colloidal semiconductor nanoplatelets (NPLs) are a kind of two-dimensional nanomaterial with uniform thickness at the atomic scale, thus leading to the characteristics of tunable emission wavelength and narrow bandwidth. Here, we report wide color gamut white light-emitting diodes (WLEDs) based on high-performance CdSe-based heterostructurc NPLs. The narrow-band CdSe/CdS core/crown and CdSe/ZnCdS core/shell NPLs are chosen as green (similar to 521 nm) and red (similar to 653 nm) luminescent materials, respectively. They represent excellent PL properties, such as narrow linewidth, high quantum yields, and high photostability. Importantly, the further fabricated NPL-WLEDs exhibits an ultrawide color gamut covering up similar to 141.7% of the NTSC standard in the CIE 1931 color space and excellent stability towards driving currents. These outstanding device performances indicate that the colloidal semiconductor NPLs possess huge potentiality to achieve higher color saturation and wide color gamut for applications in new-generation lightings and displays. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要