谷歌浏览器插件
订阅小程序
在清言上使用

A Novel Proton-Integrating Radiography System Design Using a Monolithic Scintillator Detector: Experimental Studies

Nuclear instruments and methods in physics research Section A, Accelerators, spectrometers, detectors and associated equipment/Nuclear instruments & methods in physics research Section A, Accelerators, spectrometers, detectors and associated equipment(2022)

引用 2|浏览8
暂无评分
摘要
Research on proton-based imaging systems aims to improve treatment planning, internal anatomy visualization, and patient alignment for proton radiotherapy. The purpose of this study was to demonstrate a new proton radiography system design consisting of a monolithic plastic scintillator volume and two optical cameras for use with scanning proton pencil beams. Unlike the thin scintillating plates currently used for proton radiography, the plastic scintillator volume (20 × 20 × 20 cm3) captures a wider distribution of proton beam energy depositions and avoids proton-beam modulation. The proton imaging system's characteristics were tested using image uniformity (2.6% over a 5 × 5 cm2 area), stability (0.37%), and linearity (R2 = 1) studies. We used the light distribution produced within the plastic scintillator to generate proton radiographs via two different approaches: (a) integrating light by using a camera placed along the beam axis, and (b) capturing changes to the proton Bragg peak positions with a camera placed perpendicularly to the beam axis. The latter method was used to plot and evaluate relative shifts in percentage depth light (PDL) profiles of proton beams with and without a phantom in the beam path. A curvelet minimization algorithm used differences in PDL profiles to reconstruct and refine the phantom water-equivalent thickness (WET) map. Gammex phantoms were used to compare the proton radiographs generated by these two methods. The relative accuracies in calculating WET of the phantoms using the calibration-based beam-integration (and the PDL) methods were -0.18 ± 0.35% (-0.29 ± 3.11%), -0.11 ± 0.51% (-0.15 ± 2.64%), -2.94 ± 1.20% (-0.75 ± 6.11%), and -1.65 ± 0.35% (0.36 ± 3.93%) for solid water, adipose, cortical bone, and PMMA, respectively. Further exploration of this unique multicamera-based imaging system is warranted and could lead to clinical applications that improve treatment planning and patient alignment for proton radiotherapy.
更多
查看译文
关键词
Proton radiography,Plastic scintillator,Proton therapy,CCD camera
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要