Effects of inhibiting astrocytes and BET/BRD4 chromatin reader on spatial memory and synaptic proteins in rats with Alzheimer’s disease

Metabolic Brain Disease(2022)

引用 8|浏览4
暂无评分
摘要
Communication between astrocytes and neurons has a profound effect on the pathophysiology of Alzheimer’s disease (AD). Astrocytes regulate homeostasis and increase synaptic plasticity in physiological situations, however, they become activated during the progression of AD. Whether or not these reactions are supportive or detrimental for the central nervous system have not been understood yet. Considering epigenetic regulation of neuroinflammatory genes by chromatin readers, particularly bromodomain and extraterminal domain (BET) family, here we examined the effect of chronic co-inhibition of astrocytes metabolism (with fluorocitrate) and also BRD4 (with JQ1) on cognition deficit at early stages of AD. Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intrahippocampal injection of Aβ 1-42 (4 μg/8 μl/rat). Then animals were divided into five groups of Saline+DMSO, Aβ + saline+DMSO, Aβ + JQ1, Aβ + FC (fluorocitrate), and Aβ + JQ1 + FC and received the related treatments. Two weeks later, spatial memory was recorded by Morris Water Maze (MWM), and the levels of phosphorylated cyclic-AMP response element binding protein (CREB), postsynaptic density 95 (PSD95), synaptophysin (SYP), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus by western blotting and RT-qPCR. Administration of JQ1 significantly improved both acquisition and retrieval of spatial memory, which were evident by decreased escape latency and increased total time spent (TTS) in target quadrant, and significant rise in p-CREB, PSD95, and synaptophysin compared with Aβ + saline+DMSO group. In contrast, both groups receiving FC demonstrated memory decline, and reduction in p-CREB, PSD95 and synaptophysin in parallel with increase in TNF-α. Our data indicate that chronic inhibition of BRD4 significantly restores memory impaired by amyloid β partly via CREB signaling and upregulating synaptic proteins of PSD95 and synaptophysin. However, inhibition of astrocytes nullifies the memory-boosting effects of JQ1 and reduces CREB/PSD95/synaptophysin levels in hippocampus. Graphical abstract
更多
查看译文
关键词
Alzheimer’s disease, Epigenetics, Cognition deficit, Astrocytes, CREB, PSD95
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要