Effective coordination numbers from EXAFS: general approaches for lanthanide and actinide dioxides

JOURNAL OF SYNCHROTRON RADIATION(2022)

引用 13|浏览6
暂无评分
摘要
Extended X-ray absorption fine structure (EXAFS) is a comprehensive and usable method for characterizing the structures of various materials, including radioactive and nuclear materials. Unceasing discussions about the interpretation of EXAFS results for actinide nanoparticles (NPs) or colloids were still present during the last decade. In this study, new experimental data for PuO2 and CeO2 NPs with different average sizes were compared with published data on AnO(2) NPs that highlight the best fit and interpretation of the structural data. In terms of the structure, PuO2, CeO2, ThO2, and UO2 NPs exhibit similar behaviors. Only ThO2 NPs have a more disordered and even partly amorphous structure, which results in EXAFS characteristics. The proposed new core-shell model for NPs with calculated effective coordination number perfectly fits the results of the variations in a metal-metal shell with a decrease in NP size.
更多
查看译文
关键词
extended X-ray absorption fine structure (EXAFS), actinide, plutonium, cerium, nanoparticles, coordination number
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要