FPGA-based Dual Core TRNG Design Using Ring and Runge-Kutta-Butcher based on Chaotic Oscillator

Chaos theory and applications(2021)

引用 7|浏览1
暂无评分
摘要
Despite the fact that chaotic systems do not have very complex circuit structures, interest in chaotic systems has increased considerably in recent years due to their interesting dynamic properties. Thanks to the noise-like properties of chaotic oscillators and the ability to mask information signals, great efforts have been made in recent years to develop chaos-based TRNG structures. In this study, a new chaos-based dual entropy core TRNG with high operating frequency and high bit generation rate was realized using 3D Pehlivan-Wei Chaotic Oscillator (PWCO) structure designed utilizing RK-Butcher numerical algorithm on FPGA and ring oscillator structure. In the FPGA-based TRNG model of the system, 32-bit IQ-Math fixed-point number standard is used. The developed model is coded using VHDL. The designed TRNG unit was synthesized for Virtex-7 XC7VX485T-2FFG1761 chip produced by Xilinx. Then, the statistics of the parameters of FPGA chip resource usage and unit clock speed were examined. The data processing time of the TRNG unit was achieved by using the Xilinx ISE Design Tools 14.2 simulation program, with a high bit production rate of 437.043 Mbit/s. In addition, number sequences obtained from FPGA-based TRNG were subjected to the internationally valid statistical NIST 800-22 Test Suite and all the randomness tests of NIST 800-22 Test Suite were successful.
更多
查看译文
关键词
chaotic systems,ring oscillator,rk-butcher,dual core trng,fpga
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要