谷歌浏览器插件
订阅小程序
在清言上使用

Alzheimer’s disease and cerebrovascular pathology alter brain endothelial inward rectifier potassium (K IR 2.1) channels

British Journal of Pharmacology(2021)

引用 10|浏览6
暂无评分
摘要
Background and Purpose Inward rectifier potassium (KIR) channels are key effectors of vasodilatation in neurovascular coupling (NVC). KIR channels expressed in cerebral endothelial cells (ECs) have been confirmed as essential modulators of NVC. Alzheimer's disease (AD) and cerebrovascular disease (CVD) impact on EC-KIR channel function, but whether oxidative stress or inflammation explains this impairment remains elusive. Experimental Approach We evaluated KIR channel function in intact and EC-denuded pial arteries of wild-type (WT) and transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APP mice, recapitulating amyloid β-induced oxidative stress seen in AD) or a constitutively active form of TGF-β1 (TGF mice, recapitulating inflammation seen in cerebrovascular pathology). The benefits of antioxidant (catalase) or anti-inflammatory (indomethacin) drugs also were investigated. Vascular and neuronal components of NVC were assessed in vivo. Key Results Our findings show that (i) KIR channel-mediated maximal vasodilatation in APP and TGF mice reaches only 37% and 10%, respectively, of the response seen in WT mice; (ii) KIR channel dysfunction results from KIR2.1 subunit impairment; (iii) about 50% of K+-induced artery dilatation is mediated by EC-KIR channels; (iv) oxidative stress and inflammation impair KIR channel function, which can be restored by antioxidant and anti-inflammatory drugs; and (v) inflammation induces KIR2.1 overexpression and impairs NVC in TGF mice. Conclusion and Implications Therapies targeting both oxidative stress and inflammation are necessary for full recovery of KIR2.1 channel function in cerebrovascular pathology caused by AD and CVD.
更多
查看译文
关键词
Intracranial Pressure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要