Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence

Biogeosciences Discussions(2022)

引用 5|浏览4
暂无评分
摘要
A central question in carbon research is how stabilization mechanisms in soil change over time with soil development and how this is reflected in qualitative changes in soil organic matter (SOM). To address this matter, we assessed the influence of soil geochemistry on bulk SOM composition along a soil chronosequence in California, USA, spanning 3 million years. This was done by combining data on soil mineralogy and texture from previous studies with additional measurements on total carbon (C), stable isotope values (delta C-13 and delta N-15), and spectral information derived from diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). To assess qualitative shifts in bulk SOM, we analysed the peak areas of simple plant-derived (S-POM), complex plant-derived (C-POM), and predominantly microbial-derived organic matter (OM; MOM) and their changes in abundance across soils with several millennia to millions of years of weathering and soil development. We observed that SOM became increasingly stabilized and microbial-derived (lower C : N ratio, increasing delta C-13 and delta N-15) as soil weathering progressed. Peak areas of S-POM (i.e. aliphatic root exudates) did not change over time, while peak areas of C-POM (lignin) and MOM (components of microbial cell walls (amides, quinones, and ketones)) increased over time and depth and were closely related to clay content and pedogenic iron oxides. Hence, our study suggests that with progressing soil development, SOM composition co-varied with changes in the mineral matrix. Our study indicates that structurally more complex OM compounds (C-POM, MOM) play an increasingly important role in soil carbon stabilization mechanisms as the mineral soil matrix becomes increasingly weathered.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要