Atomistic Molecular Dynamics Simulation Based Failure Criterion of Polycrystalline Graphene Under Biaxial Loading

ASME 2020 International Mechanical Engineering Congress and Exposition(2020)

引用 0|浏览0
暂无评分
摘要
Abstract Graphene sheets produced by chemical vapor deposition (CVD) are polycrystalline and the presence of grain boundaries (GBs) alter their mechanical properties relative to single-crystal graphene. In this study, we have performed a series of molecular dynamics simulations using REBO2+S potential in order to develop a failure criterion for infinite polycrystalline graphene sheets under biaxial tension. We have studied the effect of temperature on mechanical properties of polycrystalline graphene for both uniaxial and biaxial loading conditions. The normal stresses are normalized with respect to the corresponding uniaxial ultimate strength values and the normalized stresses are used to define the failure envelope of polycrystalline graphene. Our study suggests that a bilinear failure envelope or a circular failure envelope can be used to represent with reasonable accuracy the tensile strength of polycrystalline graphene under biaxial loading at different temperatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要