Thermal evaporation assisted perovskite deposition for highly efficient and stable solar cells and modules on sputtered NiO

Organic, Hybrid, and Perovskite Photovoltaics XXII(2021)

引用 0|浏览2
暂无评分
摘要
In recent years, organometal halide perovskite based photovoltaics have attracted great interest for their high power conversion efficiency (PCE) potentially at low manufacturing cost. Despite the massive progress made by the community, the long-term performance stability and the manufacturability at large scale remain very challenging. In this work, we demonstrate a stable and scalable architecture for perovskite module fabrication. Thermal evaporation assisted 2-step approach is employed for the 1.53 eV perovskite deposition. For high throughput processing, NiOx by linear reactive sputtering is developed as the inorganic hole transport layer (HTL). PCE of 20% is achieved for the solar cell. Perovskite modules with monolithic series interconnected cells by picosecond laser scribing based on the developed cell stack are also fabricated. Above 80% of the initial efficiency is retained after 1000 hrs of thermal mono-stress at 85°C in N2 atmosphere.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要