谷歌浏览器插件
订阅小程序
在清言上使用

Silicon-based GeSn Mid-Infrared Lasers (conference Presentation)

Novel In-Plane Semiconductor Lasers XVIII(2019)

引用 0|浏览14
暂无评分
摘要
Silicon-based optoelectronic devices have long been desired owing to the possibility of monolithic integration of photonics with high-speed Si electronics and the aspiration of broadening the reach of Si technology by expanding its functionalities well beyond electronics. To overcome the intrinsic problem of bandgap indirectness in the group-IV semiconductors such as Si and Ge, a new group-IV based material, GeSn alloy, has attracted increasing interests. The group-IV GeSn alloy has been demonstrated to become direct bandgap material with more than 8% Sn incorporation, which opens a new opportunity towards a Si-based light source with fully complementary metal-oxide-semiconductor (CMOS) compatibility. The GeSn laser contributes strongly to the progress of optoelectronic integration towards next-generation photonic integrated circuit on the Si platform, as it fills the deficiency of the efficient group-IV band-to-band lasers. Moreover, due to the tunable bandgap of GeSn, the lasing operation wavelength covers broad near- and mid-infrared range. Recently, the GeSn optically pumped lasers based on direct bandgap GeSn alloys have been demonstrated. In this work, the following aspects have been investigated: i) the novel growth strategy to obtain high Sn compositions based on spontaneous-relaxation-enhanced (SRE) Sn incorporation and the GeSn virtual substrate (VS) approaches. The maximum Sn composition of 22.3% was achieved; ii) the demonstration of GeSn optically pumped heterostructure lasers. The operation wavelength covers from 2 to 3 µm and the maximum lasing temperature is 265 K; iii) the demonstration of GeSn quantum well laser. The significantly reduced lasing threshold compared to heterostructure laser was achieved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要