Higher binding affinity of Furin to SARS-CoV-2 spike (S) protein D614G could be associated with higher SARS-CoV-2 infectivity.

International Journal of Infectious Diseases(2021)

引用 39|浏览3
暂无评分
摘要
Abstract Objective The coronavirus disease 2019 (COVID-19) pandemic has caused an exponential rise in death rates and hospitalizations. The aim of this study was to characterize the D614G substitution in the severe acute respiratory syndome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S protein), which may affect viral infectivity. Methods The effect of D614G substitution on the structure and thermodynamic stability of the S protein was analyzed with use of DynaMut and SCooP. HDOCK and PRODIGY were used to model furin protease binding to the S protein RRAR cleavage site and calculate binding affinities. Molecular dynamics simulations were used to predict the S protein apo structure, the S protein–furin complex structure, and the free binding energy of the complex. Results The D614G substitution in the G clade of SARS-CoV-2 strains introduced structural mobility and decreased the thermal stability of the S protein (ΔΔG = −0.086 kcal mol−1). The substitution resulted in stronger binding affinity (Kd = 1.6 × 10−8) for furin, which may enhance S protein cleavage. The results were corroborated by molecular dynamics simulations demonstrating higher binding energy of furin and the S protein D614G mutant (−61.9 kcal mol−1 compared with −56.78 kcal mol−1 for wild-type S protein). Conclusions The D614G substitution in the G clade induced flexibility of the S protein, resulting in increased furin binding, which may enhance S protein cleavage and infiltration of host cells. Therefore, the SARS-CoV-2 D614G substitution may result in a more virulent strain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要