Comparison of the Von Kármán and Kirchhoff models for the post-buckling and vibrations of elastic beams

Journal of Theoretical, Computational and Applied Mechanics(2021)

引用 4|浏览0
暂无评分
摘要
We compare different models describing the buckling, post-buckling and vibrations of elastic beams in the plane. Focus is put on the first buckled equilibrium solution and the first two vibration modes around it. In the incipient post-buckling regime, the classic Woinowsky-Krieger model is known to grasp the behavior of the system. It is based on the von Kármán approximation, a 2nd order expansion in the strains of the buckled beam. But as the curvature of the beam becomes larger, the Woinowsky-Krieger model starts to show limitations and we introduce a 3rd order model, derived from the geometrically-exact Kirchhoff model. We discuss and quantify the shortcomings of the Woinowsky-Krieger model and the contributions of the 3rd order terms in the new model, and we compare them both to the Kirchhoff model. Different ways to nondi-mensionalize the models are compared and we believe that, although this study is performed for specific boundary conditions, the present results have a general scope and can be used as abacuses to estimate the validity range of the simplified models.
更多
查看译文
关键词
postbuckling,natural frequencies,nonlinearities,[phys.meca.solid]physics [physics]/mechanics [physics]/solid mechanics [physics.class-ph],[phys.meca.stru]physics [physics]/mechanics [physics]/structural mechanics [physics.class-ph]
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要