A co-crystallization strategy toward high-performance n-type organic semiconductors through charge transport switching from p-type planar azaacene derivatives

JOURNAL OF MATERIALS CHEMISTRY C(2022)

引用 4|浏览12
暂无评分
摘要
In this work, we demonstrated that the co-crystallization strategy has offered an efficient and promising alternative route to achieve high-performance n-type semiconductors through charge-transport switching from pristine p-type systems. By using a simple "green synthesis" process through molecular "doping" with F(4)TCNQ into a p-type planar azaacene derivative TMIQ (0.27 cm(2) V-1 s(-1)) host, charge transport characteristic switching occurs with a high electron mobility of 0.12 cm(2) V-1 s(-1) under atmospheric conditions obtained for the D-A complex TMF4TQ (cocrystal). The reasons for such switching lie in the ingenious energy level and molecular packing arrangement tailoring. Specifically, the insertion of F(4)TCNQ molecules has led to packing transformation from herringbone stacking (TMIQ) to a dense 2D brick arrangement and the low-lying LUMO levels (-4.55 eV) aligned to gold electrodes, thereby facilitating efficient electron injection and transport, and ensuring the air-stable nature, which is further confirmed using theoretical calculations. We believe that our work would provide new insights into high-performance air-stable n-type organic semiconductors exploration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要