Investigating the Structure of α/β Carbohydrate Linkage Isomers as a Function of Group I Metal Adduction and Degree of Polymerization as Revealed by Cyclic Ion Mobility Separations

Journal of the American Society for Mass Spectrometry(2021)

引用 0|浏览0
暂无评分
摘要
In high-resolution ion mobility spectrometry-mass spectrometry (IMS-MS)-based separations individual, pure, oligosaccharide species often produce multiple IMS peaks presumably from their α/β anomers, cation attachment site conformations, and/or other energetically favorable structures. Herein, the use of high-resolution traveling wave-based cyclic IMS-MS to systematically investigate the origin of these multiple peaks by analyzing α1,4- and β1,4-linked d-glucose homopolymers as a function of their group I metal adducts is presented. Across varying degrees of polymerization, and for certain metal adducts, at least two major IMS peaks with relative areas that matched the ∼40:60 ratio for the α/β anomers of a reducing-end d-glucose as previously calculated by NMR were observed. To further validate that these were indeed the α/β anomers, rather than other substructures, the reduced versions of several maltooligosaccharides were analyzed and all produced a single IMS peak. This result enabled the discovery of a mobility fingerprint trend: the β anomer was always higher mobility than the α anomer for the cellooligosaccharides, while the α anomer was always higher mobility than the β anomer for the maltooligosaccharides. For maltohexaose, a spurious, high mobility, fourth peak was present. This was hypothesized to potentially be from a highly compacted conformation. To investigate this, α-cyclodextrin, a cyclic oligosaccharide, produced similar arrival times as the high mobility maltohexaose peak. It is anticipated that these findings will aid in the data deconvolution of IMS-MS-based glycomics workflows and enable the improved characterization of biologically relevant carbohydrates.
更多
查看译文
关键词
polymerization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要