谷歌浏览器插件
订阅小程序
在清言上使用

Error Analysis of Spaceborne High Spectral Resolution Lidar

Optical Sensing and Imaging Technologies and Applications(2019)

引用 2|浏览5
暂无评分
摘要
The high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components from the echo signals and therefore can retrieve the aerosol optical properties and lidar ratio (i.e., the extinction-to-backscatter ratio) profiles directly, which is different from the traditional Mie lidar with assumed lidar ratio. Accurate aerosol profiles measurement are useful for air quality monitoring. In this paper, a spaceborne HSRL lidar system simulation model based iodine vapor cell filter was presented. According to three different atmosphere aerosol distribution models and the uncertainties of atmosphere temperature and pressure, the signal to noise ratio (SNR) and the relative errors profiles of the backscattering coefficients of this lidar was simulated theoretically in daytime and nighttime. The result shows that the errors of aerosol backscattering coefficients are smaller in the aerosols dense area than in the sparse area. As altitude increases, the relative error of backscattering coefficient is increased. The relative backscattering coefficient error is within 16.5% below 5 km with 30 m range resolution and 10 km horizontal resolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要