谷歌浏览器插件
订阅小程序
在清言上使用

Human Activity Recognition Based on Wavelet-Based Features along with Feature Prioritization

2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA)(2021)

引用 1|浏览0
暂无评分
摘要
Activity recognition from human action data is quite a challenging task in the biomedical data science community. The main challenge in dealing with human activity recognition (HAR) datasets is their high cardinality. Therefore, reducing cardinality is a cardinal area of research in the HAR field. In this research, reducing the data dimensionality by utilizing future selection methods has been used. This research work has extracted features using wavelet packet transform (WPT) and the cardinality of the feature set has been reduced by using the Genetic Algorithm (GA) technique. The selected features also have been ranked according to their importance based on their SHAP values. In the venture, an interesting inspection has been found. That is in HAR datasets, signal values lay into lower frequency regions mostly. The highest accuracy and f1-score which have been got are 94.74%, 94.73%, and 89.98%, 89.67% for the feature extracted and feature selected dataset respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要