Initial stage sintering of polymer particles – Experiments and modelling of size-, temperature- and time-dependent contacts

Epj Web of Conferences(2017)

引用 1|浏览2
暂无评分
摘要
The early-stage sintering of thin layers of micron-sized polystyrene (PS) particles, at sintering temperatures near and above the glass transition temperature Tg (~ 100°C), is studied utilizing 3D tomography, nanoindentation and confocal microscopy. Our experimental results confirm the existence of a critical particle radius (r crit ~ 1 μm) below which surface forces need to be considered as additional driving force, on top of the usual surfacetension driven viscous flow sintering mechanism. Both sintering kinetics and mechanical properties of particles smaller than r crit are dominated by contact deformation due to surface forces, so that sintering of larger particles is generally characterized by viscous flow. Consequently, smaller particles require shorter sintering. These experimental observations are supported by discrete particle simulations that are based on analytical models: for small particles, if only viscous sintering is considered, the model under-predicts the neck radius during early stage sintering, which confirms the need for an additional driving mechanism like elastic-plastic repulsion and surface forces that are both added to the DEM model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要