Effect of osmotic and matric potentials on sclerotinia minor and sclerotinia sclerotiorum virulence on peanut

International Journal of Phytopathology(2016)

引用 1|浏览3
暂无评分
摘要
The effect of osmotic and matric potentials on mycelial growth, sclerotia production, germination, and virulence of two isolates of Sclerotinia sclerotiorum , and one isolate of S. minor were studied on potato dextrose agar (PDA) media adjusted with KCl, glycerol, or agar. Osmotic potentials created by KCl and glycerol significantly reduced vegetative growth of the three isolates. On matrically adjusted PDA, vegetative growth of the three isolates was not negatively affected by matric stress up to -3.5 MPa. When KCl was the osmoticum, sclerotia number did not follow a consistent pattern. However, sclerotia number decreased when osmotic stress created by glycerol was increased. Matric stress was not a consistent factor affecting sclerotia production by both species.  However, the highest levels of matric stress -3.0 and -3.5 MPa significantly reduced sclerotia production by both species. In general, there was a trend toward lower sclerotial germination with increasing osmotic and matric stress. Pathogenicity of S. minor and S. sclerotiorum on the peanut cultivar (Okrun) was reduced by high concentrations of KCl. Mycelia of both species produced at high matric potential -3.5 MPa did not differ in pathogenicity on Okrun compared with mycelia grown on non-amended PDA. In water-stressed-Okrun, induced by polyethylene glycol 8000, the Area under Disease Progress Curve (AUDPC) was significantly decreased. The relevance of these results to the behavior of S. minor and S. sclerotiorum, and their pathogenicity on peanut is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要