The Myc–miR-17∼92 Axis Blunts TGFβ Signaling and Production of Multiple TGFβ-Dependent Antiangiogenic Factors

Cancer Research(2010)

引用 213|浏览0
暂无评分
摘要
Abstract c-Myc stimulates angiogenesis in tumors through mechanisms that remain incompletely understood. Recent work indicates that c-Myc upregulates the miR-17∼92 microRNA cluster and downregulates the angiogenesis inhibitor thrombospondin-1, along with other members of the thrombospondin type 1 repeat superfamily. Here, we show that downregulation of the thrombospondin type 1 repeat protein clusterin in cells overexpressing c-Myc and miR-17∼92 promotes angiogenesis and tumor growth. However, clusterin downregulation by miR-17∼92 is indirect. It occurs as a result of reduced transforming growth factor-β (TGFβ) signaling caused by targeting of several regulatory components in this signaling pathway. Specifically, miR-17-5p and miR-20 reduce the expression of the type II TGFβ receptor and miR-18 limits the expression of Smad4. Supporting these results, in human cancer cell lines, levels of the miR-17∼92 primary transcript MIR17HG negatively correlate with those of many TGFβ-induced genes that are not direct targets of miR-17∼92 (e.g., clusterin and angiopoietin-like 4). Furthermore, enforced expression of miR-17∼92 in MIR17HGlow cell lines (e.g., glioblastoma) results in impaired gene activation by TGFβ. Together, our results define a pathway in which c-Myc activation of miR-17∼92 attenuates the TGFβ signaling pathway to shut down clusterin expression, thereby stimulating angiogenesis and tumor cell growth. Cancer Res; 70(20); 8233–46. ©2010 AACR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要