Enhancing Intermolecular Benzoyl‐Transfer Reactivity in Crystals by Growing a “Reactive” Metastable Polymorph by Using a Chiral Additive

Chemistry: A European Journal(2009)

引用 27|浏览1
暂无评分
摘要
Racemic 2,4-di-O-benzoyl-myo-inositol-1,3,5-orthoacetate, which normally crystallizes in a monoclinic form (form I, space group P2(1)/n) could be persuaded to crystallize out as a metastable polymorph (form II, space group C2/c) by using a small amount of either D- or L- 2,4-di-O-benzoyl-myo-inositol-1,3,5-orthoformate as an additive in the crystallization medium. The structurally similar enantiomeric additive was chosen by the scrutiny of previous experimental results on the crystallization of racemic 2,4-di-O-benzoyl-myo-inositol-1,3,5-orthoacetate. Form II crystals can be thermally transformed to form I crystals at about 145 degrees C. The relative organization of the molecules in these dimorphs vary slightly in terms of the helical assembly of molecules, that is, electrophile (El)...nucleophile (Nu) and C-H...pi interactions, but these minor variations have a profound effect on the facility and specificity of benzoyl-group-transfer reactivity in the two crystal forms. While form II crystals undergo a clean intermolecular benzoyl-group-transfer reaction, form I crystals are less reactive and undergo non-specific benzoyl-group transfer leading to a mixture of products. The role played by the additive in fine-tuning small changes that are required in the molecular packing opens up the possibility of creating new polymorphs that show varied physical and chemical properties. Crystals of D-2,6-di-O-benzoyl-myo-inositol-1,3,5-orthoformate (additive) did not show facile benzoyl-group-transfer reactivity (in contrast to the corresponding racemic compound) due to the lack of proper juxtaposition and assembly of molecules.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要