New insights into the electronic states of the Ge(0 0 1) surface by joint angle-resolved photoelectron spectroscopy and first-principle calculation investigation

Applied Surface Science(2022)

引用 2|浏览6
暂无评分
摘要
Abstract While the Ge(0 0 1) surface has been extensively studied, it is still debated whether it is of conducting or semiconducting nature at room temperature. The evidence collected by angle-resolved photoelectron spectroscopy experiments in the past has led to the preliminary attribution of a semiconducting nature at room temperature. In contrast, we show in this work that the pristine Ge(0 0 1) surface is conducting at room temperature by using temperature-dependent angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and first principles calculations. Specifically, a surface band located ∼200 meV above the valence band maximum has been observed at room temperature. This surface band shows anisotropic dispersions along the [0 1 0] and [1 1 0] directions, but it disappears at lower measurement temperature, which indicates its occupation by thermally excited electrons. State-of-the-art density functional theory calculations undoubtedly attribute this surface band to the unoccupied π*-band formed by dangling bonds on the c(4 × 2) surface reconstruction, while evidencing fundamental differences with the p(2 × 1) reconstruction. Furthermore, the calculations demonstrate that the valence band structure observed in angle-resolved photoelectron spectroscopy experiments arise from projected bulk states and is thus insensitive to surface contamination. Our results contribute to the fundamental knowledge of the Ge(0 0 1) surface and to a better understanding of its role in micro- and opto-electronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要