Momentum, angular momentum, and spin of waves in an isotropic collisionless plasma

PHYSICAL REVIEW E(2022)

引用 11|浏览4
暂无评分
摘要
We examine the momentum and angular momentum (including spin) properties of linear waves, both longitu-dinal (Langmuir) and transverse (electromagnetic), in an isotropic nonrelativistic collisionless electron plasma. We focus on conserved quantities associated with the translational and rotational invariance of the wave fields with respect to the homogeneous medium; these are sometimes called pseudomomenta. There are two types of the momentum and angular momentum densities: (i) the kinetic ones associated with the energy flux density and the symmetrized (Belinfante) energy-momentum tensor and (ii) the canonical ones associated with the conserved Noether currents and canonical energy-momentum tensor. We find that the canonical momentum and spin densities of Langmuir waves are similar to those of sound waves in fluids or gases; they are naturally expressed via the electron velocity field. In turn, the momentum and spin densities of electromagnetic waves can be written either in the forms known for free-space electromagnetic fields, involving only the electric field, or in the dual-symmetric forms involving both electric and magnetic fields, as well as the effective permittivity of plasma. We derive these properties both within the phenomenological macroscopic approach and microscopic Lagrangian field theory for the coupled electromagnetic fields and electrons. Finally, we explore implications of the canonical momentum and spin densities in transport and electrodynamic phenomena: the Stokes drift, the wave-induced magnetization (inverse Faraday effect), etc.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要