谷歌浏览器插件
订阅小程序
在清言上使用

Wound-Microenvironment Engineering Through Advanced-Dressing Bioprinting.

Cristina Del Amo, Xabier Fernandez-San Argimiro, Maria Cascajo-Castresana,Arantza Perez-Valle,Iratxe Madarieta,Beatriz Olalde,Isabel Andia

International journal of molecular sciences(2022)

引用 7|浏览11
暂无评分
摘要
In patients with comorbidities, a large number of wounds become chronic, representing an overwhelming economic burden for healthcare systems. Engineering the microenvironment is a paramount trend to activate cells and burst-healing mechanisms. The extrusion bioprinting of advanced dressings was performed with novel composite bioinks made by blending adipose decellularized extracellular matrix with plasma and human dermal fibroblasts. Rheological and microstructural assessments of the composite hydrogels supported post-printing cell viability and proliferation over time. Embedded fibroblasts expressed steady concentrations of extracellular matrix proteins, including type 1, 3 and 4 collagens and fibronectin. ELISA assessments, multiplex protein arrays and ensuing bioinformatic analyses revealed paracrine activities corresponding to wound-healing activation through the modulation of inflammation and angiogenesis. The two modalities of advanced dressings, differing in platelet number, showed differences in the release of inflammatory and angiogenic cytokines, including interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conditioned media stimulated human-dermal-cell proliferation over time. Our findings open the door to engineering the microenvironment as a strategy to enhance healing.
更多
查看译文
关键词
bioink,3D bioprinting,decellularized adipose extracellular matrix,plasma,platelet,cytokines,growth factors,wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要