High-resolution 3D Fourier ptychographic reconstruction using a hemispherical illumination source with multiplexed-coded strategy

BIOMEDICAL OPTICS EXPRESS(2022)

引用 2|浏览16
暂无评分
摘要
Fourier ptychography is a promising and flexible imaging technique that can achieve 2D quantitative reconstruction with higher resolution beyond the limitation of the system. Meanwhile, by using different imaging models, the same platform can be applied to achieve 3D refractive index reconstruction. To improve the illumination NA as much as possible while reducing the intensity attenuation problem caused by the LED board used in the traditional FP plattbrm, we apply a hemispherical lighting structure and design a new LED arrangement according to 3D Fourier diffraction theory. Therefore, we could obtain the illumination of 0.98NA using 187 LEDs and achieve imaging half-pitch resolutions of similar to 174 nm and similar to 524 nm for the lateral and axial directions respectively, using a 40x/0.6NA objective lens. Furthermore, to reduce the number of captured images required and realize real-time data collection, we apply the multiplexed-coded illumination strategy and compare several coded patterns through simulation and experiment. Through comparison, we determined a radial-coded illumination pattern that could achieve more similar results as sequential scanning and increase the acquisition speed to above 1 Hz. Therefore, this paper provides the possibility of this technique in real-time 3D observation of in vitro live samples. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要