谷歌浏览器插件
订阅小程序
在清言上使用

A Numerical Analysis of Dynamic Slosh Dampening Utilising Perforated Partitions in Partially-Filled Rectangular Tanks

JOURNAL OF MARINE SCIENCE AND ENGINEERING(2022)

引用 4|浏览3
暂无评分
摘要
Conventional liquefied natural gas (LNG) cargo vessels are imposed with tank-fill limitations as precautions to prevent structural damage and stability-loss due to high-impact sloshing, enforcing cargo volume-fills to be lower than 10% or higher than 70% of the tank height. The restrictions, however, limit commercial operations, specifically when handling spot trades and offshore loading/unloading at multiple ports along a shipping route. The study puts forward a computational fluid dynamic (CFD) sloshing analysis of partially-filled chamfered rectangular tanks undergoing sinusoidal oscillatory kinetics with the use of the explicit volume-of-fluid and non-iterative time-advancement schemes. Establishing a 20% to 60% fill-range, the sloshing dynamics were acknowledged within an open-bore, partitioned, and perforated-partitioned tank when oscillating at frequencies of 0.5 Hz and 1 Hz. The overall torque and static pressure induced on the tank walls were investigated. High-impact slamming at the tank roof occurred at 40% and 60% fills, however, the implementation of the partition and perforated-partition barriers successfully reduced the impact due to suppression and dissipation of the wave dynamics.
更多
查看译文
关键词
sloshing,pendulum oscillation,rectangular tank,CFD,NITA,VOF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要