Single‐Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes

Advanced Energy Materials(2022)

引用 45|浏览29
暂无评分
摘要
Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single-atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen-doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA-Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much-improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs.
更多
查看译文
关键词
binding energy, dendrite-free deposition, reversible lithiophilic sites, single-atom, structural stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要