Interface regulation promoting carbon monoxide gas diffusion electrolysis towards C2+ products

Chemical communications (Cambridge, England)(2022)

引用 1|浏览2
暂无评分
摘要
Electrochemical conversion of carbon dioxide and carbon monoxide into value-added multi-carbon products (C2+) offers a promising approach for artificial oxycarbide recycling. However, C2+ productivity is still limited by gas accessibility inside the catalyst layer. Here, a Cu-PMMA porous hybrid architecture with rich triple-phase boundaries was demonstrated to enhance both gas diffusion and electron transfer, and then, facilitate the kinetics of CO electrolysis. As a result, a high C2+ faradaic efficiency (FE) of 81.6% at a current density of 50 mA cm−2 and a maximum C2+ partial current density of 140 mA cm−2 were achieved, among the best performances for Cu/hybrid catalysts. This study provides a novel strategy for designing electrochemical CO reduction (ECORR) catalysts and paves the way for further developing gas-involving electrocatalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要