Multi-SANA: Comparing Measures of Topological Similarity for Multiple Network Alignment

IEEE Transactions on Evolutionary Computation(2022)

引用 1|浏览17
暂无评分
摘要
All life on Earth is related, so that some molecular interactions are common across almost all living cells, with the number of common interactions increasing as we look at more closely related species. In particular, we expect the protein–protein interaction (PPI) networks of closely related species to share high levels of similarity. This similarity may facilitate the transfer of functional knowledge between model species and human. Multiple network alignment is the process of uncovering the connection similarity between three or more networks simultaneously. Existing algorithms for multiple network alignment rely on sequence similarities to help drive the alignments, and no comprehensive study has been done to determine the most effective ways to utilize network connectivity—network topology—to drive multiple network alignment. Here, we devise and empirically test the efficacy of several measures of topological similarity between three or more networks. To evolve the alignments toward optimal, we use simulated annealing as the search algorithm since it is agnostic to the objective being optimized. We test the measures both on the partially synthetic and highly similar PPI networks from the integrated interaction database, as well as on real PPI networks from a recent BioGRID release.
更多
查看译文
关键词
Multiple network alignment,network topology,simulated annealing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要