Mutation and dynamic objective-based farmland fertility algorithm for workflow scheduling in the cloud

Huifang Li, Yizhu Wang, Jingwei Huang,Yushun Fan

Journal of Parallel and Distributed Computing(2022)

引用 8|浏览20
暂无评分
摘要
Nowadays, many scientific applications are deployed in the cloud to execute at a lower cost. However, the growing scale of workflows makes scheduling problems challenging. To minimize the workflow execution cost under deadline constraints, this article proposes a Mutation and Dynamic Objective-based Farmland Fertility (MDO-FF) algorithm for obtaining a near-optimal solution within a relatively shorter time. A Dynamic Objective Strategy (DOS) is introduced to accelerate the convergence speed, while a multi-swarm evolutionary approach and mutation strategies are incorporated to enhance the search diversity and help to escape from local optima. By seeking new potential solutions and searching in its corresponding neighborhoods, our proposed MDO-FF can make a good trade-off between exploration and exploitation. Extensive experiments are conducted on well-known scientific workflows with different types and sizes. The experimental results demonstrate that in most cases, our MDO-FF outperforms the existing algorithms in terms of constraint satisfiability and solution quality.
更多
查看译文
关键词
Cloud computing,Workflow scheduling,Deadline constraints,Meta-heuristics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要