Conceptual Design for Assembly methodology formalization: systems installation analysis and manufacturing information integration in the design and development of aircraft architectures

Journal of Industrial Information Integration(2022)

引用 6|浏览1
暂无评分
摘要
In recent years, the air transport market has experienced strong growth, increasing the demand for new civil aircraft, challenging the actual production rate of aerospace industries. The bottleneck of the production for the aviation industry lies in the capability of the manufacturing and assembly facilities to fulfill the module arrangement in the current design. The development of optimized product architecture requires the implementation of design for assembly principles at the conceptual design phase closing the gap between the design and the production departments. The study proposes a Conceptual Design for Assembly (CDfA) methodology which aims at the assessment of aircraft systems installation and assembly at the early phase of product development (conceptual design). The CDfA methodology allows comparing assembly performance of different aircraft architectures identifying critical modules and interfaces as well as assembly/installation issues. The methodology is based on a specific framework (hierarchical structure) which is characterized by levels, domains, and attributes. Levels enable the analysis of product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization). Domains and attributes are defined with a knowledge-based engineering approach considering available information at the conceptual design phase and production criteria. A complex system (the nose fuselage of a commercial aircraft) was chosen as a case study to test the robustness of the methodology in relation to the assembly performance observed within the manufacturing facilities. Results revealed the architectural elements (modules and interfaces) that contribute to inefficient assembly operations, as well as the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency.
更多
查看译文
关键词
product design and development,product architecture,aircraft,system installation,modularity,conceptual design,design for manufacturing and assembly,DFMA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要