AtEH/Pan1 proteins drive phase separation of the TPLATE complex and clathrin polymerisation during plant endocytosis

biorxiv(2022)

引用 3|浏览27
暂无评分
摘要
Endocytosis is the process by which cells internalise molecules from their cell surface via plasma membrane-derived vesicles. In plants, clathrin-mediated endocytosis requires the evolutionarily ancient TSET/TPLATE complex (TPC), which was lost in metazoan and fungal lineages. TPC is required for membrane bending, but how TPC functions in the initiation of endocytosis and clathrin assembly is unclear. Here we used live-cell imaging and biochemical approaches to investigate the function of the Arabidopsis thaliana TPC subunit AtEH1/Pan1. Using in vitro and in vivo experiments we found that AtEH/Pan1 proteins can self-assemble into condensates through phase separation, which is influenced by both structured and intrinsically disordered regions. The proteome composition of these condensates revealed many key endocytic components which are selectively recruited via prion-like- and IDR-based interactions, including the ESCRT-0 TOM-Like proteins. Furthermore, AtEH/Pan1 condensates selectively nucleate on the plasma membrane by binding specific phospholipid species that are recognised by their EH domains. Visualization of the ultrastructure of the endocytic condensates via CLEM-ET revealed that the coat protein clathrin can assemble into lattices within condensates. Our results reveal that AtEH/Pan1 proteins act as scaffolds to direct endocytic machinery to specific plasma membrane regions to initiate internalisation. These findings provide new insight into the interplay between membranes and protein condensates. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要