Chrome Extension
WeChat Mini Program
Use on ChatGLM

STAM: A Spatiotemporal Aggregation Method for Graph Neural Network-based Recommendation

Proceedings of the ACM Web Conference 2022(2022)

Tsinghua Univ | Aibaba Grp

Cited 53|Views962
Abstract
Graph neural network-based recommendation systems are blossoming recently, and its core component is aggregation methods that determine neighbor embedding learning. Prior arts usually focus on how to aggregate information from the perspective of spatial structure information, but temporal information about neighbors is left insufficiently explored. In this work, we propose a spatiotemporal aggregation method STAM to efficiently incorporate temporal information into neighbor embedding learning. STAM generates spatiotemporal neighbor embeddings from the perspectives of spatial structure information and temporal information, facilitating the development of aggregation methods from spatial to spatiotemporal. STAM utilizes the Scaled Dot-Product Attention to capture temporal orders of one-hop neighbors and employs multi-head attention to perform joint attention over different latent subspaces. We utilize STAM for GNN-based recommendation to learn users and items embeddings. Extensive experiments demonstrate that STAM brings significant improvements on GNN-based recommendation compared with spatial-based aggregation methods, e.g., 24% for MovieLens, 8% for Amazon, and 13% for Taobao in terms of MRR@20.
More
Translated text
Key words
Spatiotemporal Aggregation Method,Self-Attention,GNN-based,Recommendation
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Using MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本论文提出了一种名为STAM的时空聚合方法,用于图神经网络推荐系统。该方法能够有效地将时间信息纳入到邻居嵌入学习中,从而促进了聚合方法从空间到时空的发展。实验证明,相比于基于空间的聚合方法,STAM在基于图神经网络的推荐中取得了显著的改进。

方法】:STAM利用缩放点积注意力机制来捕获一跳邻居的时间顺序,并采用多头注意力机制在不同的潜在子空间上进行联合注意力。它将时空邻居嵌入从空间结构信息和时间信息的角度生成。

实验】:在电影推荐、亚马逊推荐和淘宝推荐等方面,STAM相比空间聚合方法取得了显著的改进,如MovieLens提升了24%,亚马逊提升了8%,淘宝提升了13%的[email protected]指标。使用的数据集为MovieLens、Amazon和Taobao。