113 km Free-Space Time-Frequency Dissemination at the 19th Decimal Instability

arxiv(2022)

引用 12|浏览21
暂无评分
摘要
Optical clock networks play important roles in various fields, such as precise navigation, redefinition of "second" unit, and gravitational tests. To establish a global-scale optical clock network, it is essential to disseminate time and frequency with a stability of $10^{-19}$ over a long-distance free-space link. However, such attempts were limited to dozens of kilometers in mirror-folded configuration. Here, we take a crucial step toward future satellite-based time-frequency disseminations. By developing the key technologies, including high-power frequency combs, high-stability and high-efficiency optical transceiver systems, and efficient linear optical sampling, we demonstrate free-space time-frequency dissemination over two independent links with femtosecond time deviation, $3\times10^{-19}$ at 10,000 s residual instability and $1.6\times10^{-20}\pm 4.3\times10^{-19}$ offset. This level of the stability retains for an increased channel loss up to 89 dB. Our work can not only be directly used in ground-based application, but also firmly laid the groundwork for future satellite time-frequency dissemination.
更多
查看译文
关键词
19th decimal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要